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Abstract—
Sensor networks are distributed real-time embedded (DRE)

systems that often operate in open environments where operat-
ing conditions, workload, resource availability, and connectivity
cannot be accurately characterized a priori. As with other open
DRE systems, they must perform sequences of heterogeneous
data collection, manipulation, and coordination tasks to meet
specified system objectives. The South East Alaska MOnitor-
ing Network for Science, Telecommunications, Education, and
Research (SEAMONSTER) project illustrates many common
system management and dynamic operation challenges in a
representative sensor network, including adapting to changes
in network topology, effective reaction to local environmental
changes, and power management through system sleep/wake
cycles. This paper discusses a case study for applying middleware
and autonomous agent technologies from the Multi-agent Archi-
tecture for Coordinated Responsive Observations (MACRO) to
these challenges in the SEAMONSTER sensor network.

I. I NTRODUCTION

Today’s scientists have an unprecedented advantage in
studying and predicting weather, natural disasters, and climate
change using information gathered from sensors around the
globe, and quickly transmitted to central locations where
significant computational resources are available for model
building, data analysis, and data prediction. Unfortunately, the
configurations and operations of individual sensor networks
are often performed in anad hoc manner, which impedes
adding of new sensors, updating/modifying their software,and
reconfiguring them to accommodate evolving conditions and
changing science needs. These sensor networks are typically
distributed real-time embedded (DRE) systems, and they face
many of the system management and dynamic operation
challenges that arise in DRE systems in other domains, such
as shipboard computing [6] and fractionated spacecraft [2].
In these related domains, many of these challenges are being
addressed through the use ofcomponent middleware[5], which
automates remoting, lifecycle management, system resource
management, deployment, and configuration. In large sensor
nets, or sensor webs as they are sometimes referred to, a
component middleware approach is even more critical to
address the much larger assets and computational resources
that need to be coordinated and managed to address weather,
climate change, and disaster management problems.

Deployed hardware and sensors are also increasingly config-
urable and must operate inopenenvironments where operating
conditions, workload, resource availability, and connectivity
cannot be accurately characterizeda priori. The challenges
presented by such open environments are only recently being
addressed in DRE systems [15]. The combination of state-of-
the-art component middleware with intelligent, local autonomy
in application generation, resource allocation, and coordina-
tion provides a powerful solution approach to many system
management and dynamic operation challenges facing sensor
networks.

This paper presents a case study where a combination of
middleware and autonomous agent technologies developed
as theMulti-agent Architecture for Coordinated Responsive
Observations[13] (MACRO) is applied to theSouth East
Alaska MOnitoring Network for Science, Telecommunications,
Education, and Research(SEAMONSTER) [3], a representa-
tive sensor network for monitoring of glacier discharges. The
major challenges using these technologies for the SEAMON-
STER project are presented along with the solution approach
provided by MACRO software. Finally, we summarize impor-
tant lessons learned from our initial application of MACRO
software to SEAMONSTER hardware.

II. MACRO A RCHITECTURETESTBED

Development of the MACRO architecture is currently being
driven by the SEAMONSTER project, which provides a real-
world platform for development and evaluation of middleware,
resource allocation and control infrastructure, and multi-agent
coordination techniques for smart sensor webs. This section
describes the SEAMONSTER project, and the testbed we
constructed at the Institute for Software Integrated Systems
(ISIS) in Vanderbilt University using the same hardware and
sensors deployed in SEAMONSTER to enable controlled
studies of real-world SEAMONSTER use cases.

A. Overview of SEAMONSTER

SEAMONSTER is a NASA-sponsored smart sensor web
project located in Juneau, AK. The SEAMONSTER sensor
network supports collaborative environmental science with
sensor data from the nearby glaciers and watersheds, which



includes timely production of relevant sensor data and goal-
driven coordination within the sensor network. For example,
autonomous increase in the rate of data collection for relevant
sensors when an event like a glacial lake drainage is recog-
nized.

B. Overview of the MACRO Framework
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Fig. 1: MACRO Architecture

The Multi-agent Architecture for Coordinated, Responsive
Observations (MACRO) architecture provides a powerful com-
putational infrastructure for enabling the deployment and
operation of large distributed sensor networks, i.e., a sensor
web. The system comprises of two levels of agents: (i) the
mission level, where agents interact with users to define
science goals and then translate these goals into a set of
prioritized tasks that have to be executed to achieve these
goals, and (ii) resource level, where agents translate tasks
into activities related to data collection, data analysis,and
data communication. The resource agents use component
middleware and novel services, such as the Spreading Ac-
tivation Partial Order Planner (SAPOP) for supporting dy-
namic (re)planning/scheduling and the Resource Allocation
and Control Engine (RACE) for resource allocation/control,
to achieve the necessary local autonomy to react to changing
conditions, while efficiently achieving mission goals with
limited resources. The implementation of the agents is based
on a state-of-the-art component middleware implementation of
CORBA and the CORBA Component Model (CCM) to ensure
interoperability across heterogeneous computing platforms,
reduce development costs, and improve overall robustness
and scalability. The agents operate on a quality of service
(QoS)-enabled component middleware framework, shown in
Figure 1 to ensure that a diverse set of science objectives can
be met. This architecture helps overcome current limitations
by facilitating real-time, reactive data acquisition, analysis,
fusion, and distribution, i.e., a “smart sensing” capability in
the sensor web context.

C. Overview of ISIS Smart Sensor Web Testbed

The ISIS Smart Sensor Web Testbed (ISISWEB) consists
of hardware that is identical to that used in the field by
the SEAMONSTER project. This hardware falls into three
categories: (1) primary microservers, (2) adjunct microservers,
and (3) sensor motes. The ISISWEB environment consists of
two primary microservers, three adjunct microservers, andten
sensor motes.

1) ISISWEB Hardware:Primary microservers. The pri-
mary microservers serve as the primary gateway from the
sensor network in the field to the outside world. These units,
known as Vexcel/Microsoft microservers, are custom designed
ruggedized cases which enclose a number of commercial off
the shelf (COTS) components. The most significant features of
the Vexcel/Microsoft microserver are a low-power 200 MHz
ARM Single Board Computer (SBC), and a power condition-
ing subsystem (PCS) (also designed by Vexcel/Microsoft). The
PCS consists of a micro-controller that mediates all power
to devices in the microserver case, allowing the SBC to
programatically determine battery state, enable and disable
attached devices, and to indicate the length of sleep/wake
cycles.

In addition to the SBC and PCS, the microserver case
also contains a solar power regulator, a GPS unit, a wire-
less/Ethernet bridge, and a wireless signal booster. The case
also has room for additional components, such as a wireless
router. Power for the purposes of the testbed is provided by
an adjustable bench-top power supply that allows simulation
of low-power conditions.
Adjunct microservers. Adjunct microservers are inexpensive
units intended to extend the range of the primary microservers.
These units are inexpensive ARM based SBCs, which are
currently Linksys NSLU-2 NAS devices, which have been
re-flashed with Debian Linux and are affectionately known
as “SLUGs.” SLUGS do not have the fine-grained power
control available to the primary microservers, but providetwo
USB ports for flash drives, or attached sensors. Power for the
purposes of the testbed is provided by the stock power adapter,
so low-power situations are not exercised on the SLUGs.
Sensor Motes.Sensor motes are extremely low power field
sensors that serve as primary data sources for the primary
and adjunct microservers. The SEAMONSTER project uses
Moteiv tMote Sky units that have 8MHz microprocessors,
and are programmed using Tiny-OS. The tMote units have
on-board temperature, humidity, and light sensors as well as
an expansion port and USB port that may be connected to
external sensors. These motes communicate via 802.11.4 ad-
hoc networks based on the ZigBee standard [1], with a mote
that is directly connected to a microserver via USB acting asa
base station. Power for the purposes of the testbed is provided
by batteries, similar to the power mechanisms in the actual
SEAMONSTER environment.

2) ISISWEB Topology:The ISISWEB testbed may be
configured in one of two physical topologies that simulate
different use cases in the SEAMONSTER environment. This
section provides an overview of each of these topologies. For



the purposes of the testbed, both primary microservers are
equipped with COTS wireless routers.
Topology with physical distribution. This topology is useful
when it is possible to provide sufficient separation between
groupings of microserver groupings to ensure they are un-
able to communicate wirelessly. As shown in Figure 2, this
topology provides two separate microserver groupings. The
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Fig. 2: ISISWEB Topology With Physical Distribution

first consists of a single primary microserver with attached
sensors and a small tMote network. The second grouping
consists of a single primary microserver, wirelessly connected
to SLUGS which have attached tMote networks. Each primary
microserver has a physical connection to the main server.

This first topology is ideal for exercising the autonomous
operation and coordination of MACRO science agents. The
independent groups of tMote sensors are controlled by their
corresponding microservers, which must coordinate to produce
relevant data products as environmental conditions change.
Moreover, temporary loss of wireless links between mi-
croservers may require them to operate independently and
autonomously with only the non-local information from earlier
communications available.
Topology Without Physical Distribution. This topology is
useful when sufficient physical separation of the microserver
groupings is not feasible. This topology, shown in Figure 3,
consists of a single primary microserver connected physically
to the central server, with the other primary microserver
connected to the first using a wireless distribution service
(WDS). This topology effectively extends the range of wire-
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Fig. 3: ISISWEB Topology Without Physical Distribution

less network proffered by the directly attached microserver.
The SLUGs connect to this wireless network and the tMote
units are organized in a single large mesh. An alternative
configuration (which does not necessitate a wireless access
point be included with the primary microserver) is to build
the network in ad-hoc mode. This configuration decreases
the power requirements of the wireless network, but means
that nodes not within wireless range of one another (e.g.,
the directly attached microserver and either of the SLUGS
attached to the second microserver) may not communicate
directly in a point-to-point fashion.

This second topology presents challenges similar to those
presented by the previous topology, and also presents chal-
lenges to the deployment and configuration infrastructure,
particularly if the network is constructed inad hoc mode.
These challenges arise from the potentially multiple hops re-
quired in communications from global planners or deployment
infrastructure.

III. OVERVIEW OF M IDDLEWARE TECHNOLOGIES

This section describes the middleware technologies pro-
vided by MACRO that are used in the context of the SEA-
MONSTER case study described in Section II-A.

A. Overview of the CORBA Component Model

The CORBA Component Model (CCM) [10] is an extension
to the Common Request Broker Architecture (CORBA) [7]
that supports Component Based Software Engineering. CCM
enhances reusability by allowing developers to focus only on
application business logic, by abstracting away the details of
communication and configuration. Components interact with



one another only through well-defined ports which include
facets(provided interfaces),receptacles(required interfaces),
and event sources and sinks(asynchronous publish/subscribe
transport).

The CCM middleware used by MACRO is theComponent
Integrated ACE ORB(CIAO) [14], which is a quality of ser-
vice (QoS)-enabled implementation of the Lightweight CCM
(LWCCM) [8] specification built on top ofThe ACE ORB
(TAO). CIAO provides a clear separation of concerns between
configuration logic, specified at deployment time via XML-
based meta-data, andbusiness logic.

B. Overview of the Deployment And Configuration Engine

CIAO’s deployment and configuration capabilities are pro-
vided by theDeployment and Configuration of Component
Based Systems(DnC) [12] specification, which was created
by the OMG in response to the need for generic and stan-
dard mechanisms for deploying component-based applications.
The DnC standard contains a Platform Independent Model
(PIM), which includes both adata model(i.e., descriptions
of components, component compositions, target domains, and
associated configuration meta-data) and arun-time model(i.e.,
a set of interfaces used to manage application life-cycle).This
PIM is then mapped to aPlatform Specific Model(PSM)
for particular component middlewares. In this case, the CCM
specification contains this PSM.

The DnCrun-time modelmaps to a set of daemons that run
at certain points in thedomain, the collection of nodes and
communication methods that comprise the target environment.
Important elements of therun-time modelinclude:

• Node Manager, which is a daemon that runs on all nodes
in the domain that is responsible for deploying, configur-
ing, and managing all components deployed to that node.
This daemon also supports monitors necessary to report
resource status on the node to the global planning agents.
Each node in the sensor web will have a running Node
Manager.

• Execution Manager, which is a daemon that coordinates
the activities of allNode Managersin a given domain.
This daemon is the primary point of control for the life-
cycle of all component applications. Primary microservers
with direct connections to the main server will have
execution manager.

• Target Manager, which is a daemon that collates and
reports resource availability in a given domain. Infor-
mation is collected from resource monitors installed in
individual Node Managers. Like theExecution Manager,
this daemon will run on primary microservers with direct
connection to the main server.

• Repository Manager,which is a daemon that maintains a
collection of component meta-data and binary implemen-
tations. IndividualNode Managersmay contact nearby
repositories to download binaries for components they
are tasked to deploy, while planning agents may query
the repository for information about components available
for deployment. An instance of theRepository Manager

will run on the primary server for use by the global
planning agents, another instance will reside on primary
microservers with direct connections to the main server
for use by nodes in the field.

IV. RESOLVING DEPLOYMENT AND CONFIGURATION

CHALLENGES IN SENSORWEBS

This section describes our solutions to common problems
that arose in the deployment and configuration of the SEA-
MONSTER sensor web.

A. Adapting to Changing Network Topology

Context.Sensor networks that reside in remote or inaccessi-
ble locations may suffer from frequent and unexpected changes
to its network topology. These changes may be transient
in nature,e.g., due to limited resources such as power or
temporary disruptions in wireless transmission, or permanent
in nature,e.g., due to damage to or destruction of physical
resources.

Problem. Changes in network topology impacts the sensor
web in two ways. First, loss of a particular node means
temporary or permanent loss of the data stored on that node.
The middleware used to facilitate implementation of the sensor
web should be able to provide fault tolerant storage of data
in an application independent manner. Moreover, the fault
tolerance strategy may need to change when failures are
detected,i.e., if a node loses its mirror (a node selected to
store a duplicate of its data), another node should be selected
as a mirror for that node. Second, temporary or permanent loss
of a wireless node may interrupt direct communication paths
between nodes. As shown in Figure 4, there may be alternate
paths that could be used for communication in the face of
failed nodes. The middleware should be able to discover and
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Fig. 4: Alternate Communication Paths with Failed Nodes

take advantage of these alternate paths.
Solution approach.To address the first problem, a natural

approach is to make use of the asynchronous pub/sub com-
munication ports available in the CCM middleware. Agents
responsible for collecting and collating data from attached



sensors can publish noteworthy data to one of its event ports.
The CCM middleware, using a pub/sub middleware such as
the OMG Data Distribution Service (DDS) [11] or CORBA
Real-time Notification Service [4], will transmit the data to
clients connected by the DnC infrastructure. Should the global
planning agent detect a failure of a data mirror, it can direct
the DnC infrastructure to connect a different sink in the failed
nodes instead, which shields the agents from where their
mirror is located and enables seamless failover in response
to faults.

The second problem is more challenging and is not directly
addressed by either the CCM or DnC middlewares, as dis-
cussed in Section V.

B. Adapting to Changing Goals and Conditions

Context. Nodes in a sensor network often have a large
number of observable phenomena in their area of interest.
The type, duration, and frequency of observation of these
phenomena may change over time, based on changes in the
environment, occurrence of events in the environment, and
changing goals and objectives in the science mission of the
sensor web. Moreover, limited processing ability, storage,
and network bandwidth limit the ability of these nodes to
continually perform observations at the desired frequencyand
fidelity. In addition, the ability to observe certain phenomena
could be influenced by changes in the environment, such as
changes in the availability of sunlight to provide power due
to inclement weather or variations due to time of year and
season.

Problem. Dynamic changes in environmental conditions
coupled with limited resource availability requires individual
nodes of the sensor network to revise current operations and
future plans. To handle these dynamic changes effectively,the
nodes must be capable of some local, autonomous adaptation.
Moreover, they must be able to adapt the local system in a
goal-driven manner to maintain efficient and correct operation
of the overall sensor network.

Solution approach.To address the problem of effective re-
action to local changes, while respecting system-wide science
goals, the nodes must be capable of intelligent, autonomous
planning and action. This intelligent behavior is directedby
local MACRO agents with functional knowledge of the system
and software components. The local agent(s) use their planning
and re-planning capabilities to adapt system functionality to
local, dynamic changes, while prioritizing system activities
when sufficient resources are unavailable to fully achieve all
goals.

C. Ensuring Correct Re-Deployment After Reboot

Context. Limited availability of power, due to variations
in weather that limits ability to re-charge attached batteries,
motivates the need for power management. While powering
down sensors, radios, and other attached devices is helpful,
extreme low power conditions necessitates more aggressive
measures. Moreover, to protect against “wedging,” which is

a situation where the operating system becomes unrespon-
sive, it is advisable to reset the microservers periodically.
Where possible, this approach involves large numbers of
sleep/wake cycles, which consists of entirely powering down
a microserver for periods of time, and performing a cold boot
to restore functionality.

Problem. When the microserver returns from a sleep/wake
cycle, i.e. when the boot process completes, agents and
applications must be correctly re-deployed and connections
between nodes must be correctly re-established. Correctly
accomplishing these two tasks requires that (1) agent and
application state be preserved across the reboot, and (2)
deployment infrastructure state be preserved across reboots.

Solution approach. The current approach to solving this
problem is to create all deployment as locality-constrained
deployments. Locality-constrained deployments describeonly
components that reside on a single node and describe connec-
tions with components on other nodes with external references.
This approach is in contrast to a global deployment plan,
which describes components deployed to several nodes and
describes connections as internal references,e.g., refers to the
connected components directly. This approach requires that
each node have a complete DnC stack -i.e., each node has
both an Execution Manager and a Node Manager. Since this
approach is less desirable from the standpoint of run-time
footprint a superior approach is outlined in Section V.

V. CONCLUDING REMARKS

Deployment, configuration, and operation of distributed sen-
sor networks is typically accomplished in an ad-hoc manner.
This limits the ability of the system to evolution in its hardware
makeup, science mission, and operating environment. This
paper presents a case study that combines the MACRO agent
architecture with CCM and its associated deployment and
configuration infrastructure to the SEAMONSTER sensor web.
In addition, we describe the ISISWEB testbed, which provides
a realistic environment in which to evaluate the effectiveness
of the agent-based approach.

We found that successfully applying the CIAO CCM mid-
dleware and deployment and configuration infrastructure to
MACRO and SEAMONSTER requires the resolution of sev-
eral challenging problems.

a) Resource Constraints:The strict resource constraints
(i.e., less than 64MB RAM and less than 266 MHz processors)
were a significant hurdle due to the large memory footprint
of CIAO components and deployment infrastructure. Previous
development of CIAO has been driven largely in environments
with few resource constraints,e.g., more than a gigabyte of
RAM and processors faster than two gigahertz.

While CCM is currently functional in the ISISWEB envi-
ronment, its footprint limits the number of agents that can be
concurrently deployed to a single node in the sensor network.
Likewise, the easily saturated processors present problems
in that it may be hard to provide reasonable deployment
infrastructure responsiveness and deployment latencies.



Efforts are currently underway to reduce the footprint in-
curred by the CIAO middleware. In addition to careful analysis
and refactoring of the code, generative specialization tech-
niques are being investigated to prune middleware featuresnot
used by particular component implementations. Techniquesfor
ensuring reasonable deployment responsiveness, such as using
both OS priorities as well as QoS extensions to the CORBA
and CCM specification are also being explored.

b) Infrastructure Fault Tolerance:The faulty nature of
the SEAMONSTER environment (i.e., frequent—and possibly
unexpected—power cycling of nodes and the possibility that
nodes lose power for long periods of time) motivates the
need for better fault tolerance not necessarily of the CCM
middleware (though that is useful), but of the deployment
infrastructure itself. The approach currently taken to solve
this problem in Section IV is coarse-grained and unnecessarily
resource heavy.

Techniques for providing infrastructure level fault tolerance
for the CCM deployment infrastructure are currently being
investigated. These techniques, for node-level daemons, cur-
rently include both snapshot based,i.e. state is recorded on
a non-volatile medium, and query based,i.e. global level
daemons inform re-constituted node-level daemons of their
proper state. Fault tolerance for global daemons presents more
of a challenge, and may involve federation of these services
to provide for active replication of state information.

c) Communications in sparse wireless networks:Situa-
tions where point-to-point communications are not possible
between nodes (see Figure 4) present challenges to CIAO,
which assumes the presence of point-to-point links between
all nodes in the target environment. This challenge is currently
avoided by using infrastructure-based wireless networks to
provide routing between nodes. A more effective approach
might be to leverage the CORBA Wireless Access and Termi-
nal Mobility specification [9], which provides for featuressuch
as automatic route discovery and communications tunneling.

ACE, TAO, and CIAO are open source, and may be obtained
from http://download.dre.vandebrilt.edu.
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